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Context: supervised learning

▶ Training a classifier (e.g., a neural network) can be done by empirical
risk minimisation of a loss function.

▶ Choosing a suitable loss function is important, as it affects the
performance of the resulting classifier and the training dynamics.

– The study and design of loss functions has been a topic of interest
[Gol13, Fro15, Jan17, Dem20, Hui21].

▶ Important case: label noise, i.e., some labels of the dataset are
incorrect. An efficient way to mitigate this problem is to use loss
functions that are inherently robust to label noise [Gho15].

▶ We study the Fisher-Rao loss function, derived by an
information-geometric approach, especially in the case of label noise.
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Context: information geometry and learning

▶ The celebrated natural gradient method exploits the geometry of the
so-called neuromanifolds, parametrised by the network parameters
[Ama98].

▶ Fisher-Rao distances have been used in unsupervised learning for
shape clustering, clustering financial returns and image segmentation
[Gat17, Tay19, Pin20].

▶ They have been used as a regulariser term for adversarial learning,
and to study the geometry of the latent space of generative models
[Pic22, Arv22].

▶ Here we use the Fisher-Rao distance of the manifold of discrete
distributions as a loss function on its own in a standard classification
framework.
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Information geometry preliminaries

Let (X ,F , µ) be a σ-finite measure space and P a probability measure on
it. A statistical model

M :=
{
pθ | θ = (θ1, . . . , θn) ∈ Θ ⊂ Rn

}
is a parametric family of densities pθ =

dP
dµ : X → R+. If M is smoothly

parametrised by θ ∈ Θ and satisfies certain regularities conditions, then
becomes a smooth manifold, known as statistical manifold [Ama00].

It is possible to equip M with a Riemannian structure with the Fisher
metric, given in matrix form as Gθ = [gij(θ)]ij , with

gij(θ) = E
[(

∂

∂θi
log pθ

)(
∂

∂θj
log pθ

)]
.

The Fisher metric provides a ‘natural’ choice of geometry, since it is
essentially the unique metric that is invariant under sufficient statistics,
[Ay17].
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Information geometry preliminaries

A curve γ : [0, 1] → Θ defines a curve pγ(t) in M . Its length can be
computed as

l(γ) :=

∫ 1

0

√
∥γ̇(t)∥G dt =

∫ 1

0

√
γ̇(t)⊤Gγ(t)γ̇(t) dt.

The Fisher-Rao distance is defined as the infimum of the length of
piecewise smooth paths linking pθ1 and pθ2 (geodesic length):

dFR(pθ1 , pθ2) := dFR(θ1, θ2) := inf
γ
{l(γ) | γ(0) = θ1, γ(1) = θ2} .

Closed-form expressions for the Fisher-Rao distance are only known for
particular cases [Atk81].
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Manifold of discrete distributions

Let X = {1, 2, . . . ,K} and δi : X → {0, 1} given by δi(j) = δij .
The statistical manifold

M =
{
p =

∑K
i=1 piδ

i | pi ∈ [0, 1] ,
∑K

i=1 pi = 1
}

is in correspondence with the probability simplex

∆K−1 =
{
ppp = (p1, . . . , pK) | pi ∈ [0, 1] ,

∑K
i=1 pi = 1

}
and both can be parametrised by the set

Θ =
{
θ = (θ1, . . . , θK−1) | θi ≥ 0,

∑K−1
i=1 pi ≥ 1

}
,

with pi = θi, 1 ≤ i ≤ K − 1 and pK = 1−∑K−1
i=1 θi.
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Manifold of discrete distributions

The Fisher metric in this manifold is given by

gij(ξ) =
δij
θi

+
1

1−∑n−1
k=1 θ

k
.

An easier way to obtain the geodesics is through the isometry

π : M → Sn−1
2,+

p =
∑

i piδ
i 7→ (2

√
p1, . . . , 2

√
pn) =: (z1, . . . , zn)

from the statistical manifold with the Fisher metric to the positive part of
the radius-two sphere Sn−1

2,+ with the Euclidean metric.

Thus the Fisher metric in M is essentially the spherical metric.
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Manifold of discrete distributions

The geodesics on the sphere are arcs of great circles. Thus the distance
between two points zzzp, zzzq on Sn−1

2,+ is double the angle α between them:

2α = 2arccos
〈zzzp

2 ,
zzzq
2

〉
= 2arccos

(∑n
i=1

√
piqi
)
.

Therefore the Fisher-Rao distance on this manifold is

dFR(p, q) = 2 arccos
(∑n

i=1

√
piqi
)
.

An immediate approximation is given by the chordal distance

∥zzzp − zzzq∥2 = 2
(∑n

i=1(
√
pi −√

qi)
)1/2

= 2dH(p, q),

which happens to be double the Hellinger distance.
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Supervised learning

Each feature vector xxx ∈ X ⊆ Rn belongs to exactly one class
y ∈ Y := {1, . . . ,K}, and the data follows distribution (xxx, y) ∼ D.
A classifier (e.g., neural network) f : X → RK assigns a vector of scores
sss = (s1, . . . , sK) := f(xxx), which induces a decision ŷ = argmax1≤i≤K si.
By applying the softmax function σ, we obtain a conditional probability
P (y|xxx) represented by ppp = (p1, . . . , pK) := σ ((s1, . . . , sK)), with
pi = esi/

∑K
j=1 e

sj .

The risk associated with a loss function L : Y × RK → R+ is

RL := RL(f) := ED [L (y, f(xxx))] .

Given a training set {(xxxi, yi)}Ni=1, the associated empirical risk is

R̄L := R̄L(f) :=
1

N

N∑
i=1

L (yi, f(xxxi)) .

Training a classifier consists in solving minf R̄L(f).
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Loss functions

We denote eee(y) := (0, . . . , 0, 1︸︷︷︸
y-th

, 0, . . . , 0) ∈ RK .

Common loss functions:

▶ Mean squared error (MSE):

LMSE (y, f(xxx)) := ∥eee(y) − (σ ◦ f)(xxx)∥22 = ∥ppp∥22 − 2py + 1

▶ Mean absolute error (MAE):

LMAE (y, f(xxx)) :=
1

2
∥eee(y) − (σ ◦ f)(xxx)∥1 = 1− py

▶ Cross entropy (CE):

LCE (y, f(xxx)) := −
K∑
i=1

e
(y)
i log[(σ ◦ f)(xxx)]i = − log py
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Loss functions

Other loss functions:

▶ Cross q-entropy (q-CE) [Zha18]:

Lq-CE(y, f(xxx)) := −
K∑
i=1

e
(y)
i logq[(σ ◦ f)(xxx)]i = − logq py,

with the Tsallis q-logarithm, for q ∈ [0, 1]:

logq(x) :=

{
x1−q−1
1−q , q ̸= 1

log(x), q = 1
, x > 0.

q = 1 corresponds to the CE loss, and q = 0 is the MAE loss.
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Loss functions

▶ Fisher-Rao distance:

LFR(y, f(xxx)) :=
1

4

(
dFR(eee

(y), (σ ◦ f)(xxx))
)2

=
(
arccos

√
py
)2

▶ Hellinger distance:

LH(y, f(xxx)) :=
(
dH(eee

(y), (σ ◦ f)(xxx))
)2

= 2 (1−√
py)

It corresponds to the q-CE loss for q = 1/2.
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Loss functions

Proposition

The loss functions LFR, LCE e LH are related:

1. LFR(y, f(xxx)) = LH(y, f(xxx)) +O
(
L2
H(y, f(xxx))

)
;

2. LFR(y, f(xxx)) = LCE(y, f(xxx)) +O
(
L2
CE(y, f(xxx))

)
.

Moreover:

3. LH(y, f(xxx)) ≤ LFR(y, f(xxx)) ≤ LCE(y, f(xxx)).
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Label noise

The classifier does not have access to a set of clean samples {(xxxi, yi)}Ni=1,

but instead to a noisy dataset {(xxxi, ỹi)}Ni=1. In the case of uniform label
noise of rate η ∈ [0, 1], the noisy data follows (xxx, ỹ) ∼ Dη, given by

Pr(ỹi = j|yi = k) =

{
1− η, j = k,

η
K−1 , j ̸= k.

Definition

Let f∗ and f̂ be the global minimisers of RL(f) := ED [L(y, f(xxx))] and
Rη

L(f) := EDη [L(ỹ, f(xxx))], respectively. The risk minimisation under loss

function L is said to be noise tolerant if the classifier f̂ has the same
probability of misclassification as that of f∗.

⇝ Classifiers trained with clean and noisy data achieve the same
classification accuracy.
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Robustness to label noise

Theorem (Suffcicient condition for robustness [Gho17])

A loss function L is tolerant under uniform label noise with η < K−1
K , if∑K

i=1 L(i, f(xxx)) = C, ∀xxx ∈ X , ∀ f , for some constant C.

The MAE loss satisfies this condition, whereas MSE and CE do not:

K∑
i=1

LMAE(i, f(xxx)) =
K∑
i=1

(1− pi) = K − 1

K∑
i=1

LMSE(i, f(xxx)) =

K∑
i=1

(
∥ppp∥22 − 2pi + 1

)
= K

(
∥ppp∥22 + 1

)
− 2

K∑
i=1

LCE(i, f(xxx)) =

K∑
i=1

(− log pi) =

K∑
i=1

log
1

pi

⇝ If the sum in the condition is bounded, it is still possible to derive some
theoretical guarantees.
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Robustness to label noise

Theorem (Performance degradation under uniform label noise)

Let f∗ and f̂ be the global minimisers of RL(f) e Rη
L(f), respectively. For

the Fisher-Rao loss LFR, under uniform label noise with η < K−1
K :

0 ≤ Rη
LFR

(f∗)−Rη
LFR

(f̂) ≤ AFR

BFR ≤ RLFR
(f∗)−RLFR

(f̂) ≤ 0

with

AFR := AFR(K, η) := η

(
π2

4
− K

K − 1

(
arccos

1√
K

)2
)

BFR := BFR(K, η) := η
K
(
arccos 1√

K

)2
− π2

4 (K − 1)

K − 1− ηK
.
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Robustness to label noise

Not only label noise has a limited impact, but also it becomes negligible as
K grows, for fixed η :

lim
K→∞

AFR(K, η) = lim
K→∞

η

(
π2

4
− K

K − 1

(
arccos

1√
K

)2
)

= 0,

lim
K→∞

BFR(K, η) = lim
K→∞

η
K
(
arccos 1√

K

)2
− π2

4 (K − 1)

K − 1− ηK
= 0
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Robustness to label noise

Table: Bounds A(K, η) and B(K, η) for different loss functions.

Loss function A(K, η) B(K, η)

Mean squared error (MSE) η −η K−1
K−1−ηK

Mean absolute error (MAE) 0 0

Cross entropy (CE) +∞ −∞

Cross q-entropy [Zha18] η Kq−1
(1−q)(K−1)

η 1−Kq

(1−q)(K−1−ηK)

Fisher-Rao η

(
π2

4
− K

K−1

(
arccos 1√

K

)2
)

η
K

(
arccos 1√

K

)2
−π2

4
(K−1)

K−1−ηK

Hellinger (q = 1/2) η
2(

√
K−1)

K−1
η

2(1−
√
K)

(K−1−ηK)
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Robustness to label noise
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Figure: Bounds A(K, η) and B(K, η) as function of K, with η = 0.8− 1/K.

Robustness to label noise:

MAE ≥ Hellinger ≥ Fisher-Rao ≥ q-CE (q = 0.7) ≥ CE
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Learning speed

One would not like to trade label noise robustness for learning speed.
In gradient-like methods, the network parameters www are updated
proportionally to the gradient of the empirical risk:

www(t+1) = www(t) − γ∇wwwR̄L,

with ∇wwwR̄L = 1
N

∑N
i=1∇wwwL(yi, f(xxxi)).

MAE, CE, q-CE, Fisher-Rao and Hellinger losses can be written in the form

L(y, f(xxx)) = h(py),

for a C1 non-increasing function h : [0, 1] → R, with h(1) = 0. In this
case:

∇wwwL(y, f(xxx)) = h′(py)∇www[(σ ◦ f)(xxx)]y.
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Learning speed

Table: Functions h(py) and their derivatives |h′(py)|.

Loss function h(py) |h′(py)|

Mean absolute error (MAE) 1− py 1

Cross entropy (CE) − log py
1
py

Cross q-entropy − logq py
1

(py)
q

Fisher-Rao
(
arccos

√
py

)2 arccos
√
py√

py(1−py)

Hellinger (q = 1/2) 2
(
1−√

py
)

1√
py
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Experimental results

Synthetic data

Data generated by Gaussian
distributions centred on the vertex of
a hypercube.

▶ 100-dimensional vectors divided
in 10 classes.

▶ 8,000 training examples and
2,000 test examples.

▶ MLP network with there layers
(80, 40, 20 neurons).

▶ ReLU, stochastic gradient.
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Experimental results

Synthetic data

Table: Test accuracy (%).

Loss function η = 0 η = 0.3 η = 0.5
Mean square error (MSE) 88.39 (±0.70) 74.43 (±0.41) 64.08 (±0.70)

Cross entropy (CE) 90.21 (±1.27) 73.68 (±0.99) 60.78 (±1.15)
Fisher-Rao 89.64 (±0.80) 77.83 (±0.71) 67.38 (±0.46)
Hellinger 89.36 (±1.18) 78.43 (±0.66) 68.49 (±1.07)
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Experimental results

MNIST

Grey-scale images of handwritten
digits.

▶ 28×28 images divided in 10
classes.

▶ 60,000 training examples and
10,000 test examples.

▶ MLP network with two layers
(300, 100 neurons).

▶ ReLU, stochastic gradient.
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Classe: 0 Classe: 1 Classe: 6
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Experimental results

MNIST

Table: Test accuracy (%).

Loss function η = 0 η = 0.3 η = 0.5
Mean square error (MSE) 98.41 (±0.09) 98.40 (±0.10) 97.93 (±0.07)

Cross entropy (CE) 98.50 (±0.04) 98.14 (±0.06) 97.69 (±0.16)
Fisher-Rao 98.32 (±0.07) 98.44 (±0.05) 98.34 (±0.14)
Hellinger 98.33 (±0.05) 98.53 (±0.03) 98.40 (±0.06)
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Conclusion and perspectives

▶ We have studied the use of a loss function based on the Fisher-Rao
distance of the manifold of discrete distributions.

▶ It provides natural trade-off between robustness to (uniform) label
noise and learning speed, as seen in theoretical results and illustrative
examples.

Future perspectives:

▶ Extensive experiments, including more complex datasets and
architectures (in progress).
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